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Cyclic Thermomechanical Stresses 
– Need for Research

As identified by 2003 ITRS, 2004 NIST Workshop on 
Reliability Issues in Nanomaterials:

Thermomechanical fatigue in chip- and package-
level interconnect systems is a genuine concern for 
future generations

Detecting, testing, modeling, and control of failure 
mechanisms is necessary

We address these concerns.
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Cyclic Thermomechanical Stresses 
– Real-world Examples

Big temperature excursions!

Time - Temperature Plot for Late-Model Laptop Running CPU-
Intensive Application
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Desktop Running CPU-Intensive Application
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Experimental 
– Time-varying Electrical Stressing

Thermomechanical fatigue testing
4-point probe method
Low frequency, high current density, j
Controlled Joule heating

εthermal = ∆α ∆T (= 0.002 for Al)
(between metal and substrate)

t

σ

t
j

t

T

100 Hz

200 Hz

200 Hz

6 – 30 
MA/cm2

100 – 200 ℃

50 – 150 ℃

100 – 200 
MPa

∆σ = 100 to 200 MPa
~  σys for Al and Cu

800 µm

Si

SiO2

Al-1Si

3.3 µm

0.5 µm

R. Mönig, R. R. Keller, C. A. Volkert, 
Rev. Sci. Instrum. 75, 4997, (2004). 
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Experimental 
– Quasi in-situ Electron Backscatter Diffraction

Observe, test, observe, test, … , monitoring of one specimen:
Observed after t = 0, 10, 20, 40, 80, 160, 320, failure (697) s of 
accumulated stressing time.

V, I
ν

AC stressing for time ti

SEM, EBSD
Entire line length

V, I
ν
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Results – Damage Evolution (SEM)
Surface damage highly localized:
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Plan-view SE images
Linewidth = 3.3 µm

Progressive damage, 
typical of fatigue.
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Results – Final Failure
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Lifetime data:
Interrupted, quasi in-situ testOpen circuit at 697 s:

Similar to fatigue S-N curve:
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Results – Damage Evolution (SEM + EBSD)
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Damage localization 
corresponds to grain 
structure.

Growth of damage 
corresponds to 
growth and re-
orientation of grains! 
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Results – Grain Re-orientation
Surface normals move away from <111> with stressing:

Start 80 s 160 s 320 s

Severely deformed area:
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Re-orientation Summary for Entire Line
All severely deformed areas show drastic re-orientation
Sometimes in excess of 35°!

As-deposited starting normal orientations.
Within 10 degrees of (111).

New normal orientation of severely 
deformed structures after failure.
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Analysis 
– Damage by Dislocation Processes

Topography consistent with multiple slip:

denotes (111) slip traces
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Analysis –
Progression of Re-orientation with Cycling

Surface normals move away from (111)

s
s

Start

40sec

80sec
160sec

320sec

normal to primary 
slip plane (compression)

111
-

011

0

1

2

3

primary slip direction (tension)

Adapted from: 
Li, Li, Zhang, Wang, and Lu, 
Phil. Mag. A82, 3129 (2002).

• Irreversible rotation accumulated 
during cycling.

• Extent depends upon magnitude 
of τCRSS and number of cycles.

• Net rotation can amount to tens of 
degrees.
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Temperature
Recrystallization?

No! 
50% Trecrystallization (1 h) ~ 240 to 320 °C
Prismatic loops ⇒ sustained Tmax < ~150 °C
Consistent with time-resolved R
More deformation with increased cycling: 
inconsistent with new grains.

Higher average temperature: may be safer from 
thermomechanical fatigue point of view

Lower R ratio, lower stress

However! Can form whiskers…

TEM: loops
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Characteristic Diffusion Distances
Distance estimate: 

Dtx =
t = 0.005 s in one temperature cycle

D (m2/s) x

Grain Boundary 10-15 1.5 nm

Lattice 10-18 0.05 nm

Thermal 10-4 500 µm
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Reliability
Electromigration: Negligible!

t (1/2 current cycle) = 0.005 s: 
total diffusion distance ~1 nm or less

Passivation integrity: Depends…
Compliant dielectric (hard-baked photoresist) does nothing to 
suppress damage;
Rigid, poorly adhering dielectric (nitride) bowed and 
delaminated;
Rigid, well adhering dielectric (oxide): in progress.

Expect damage to be suppressed.
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Summary
Developing electrical-based test method for 
thermomechanical fatigue of patterned structures;

Based on controlled Joule heating;

Observed highly selective damage formation;
Dependent on grain structure;

Damage:
Severe surface topography;
Grain growth;
Grain re-orientation;

Reliability issues?

Thank you so much!
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